Fibonacci Elliptic Biquaternions
نویسندگان
چکیده
A. F. Horadam defined the complex Fibonacci numbers and quaternions in middle of 20th century. Half a century later, S. Hal{\i}c{\i} introduced by inspiring from these definitions discussed some properties them. Recently, elliptic biquaternions, which are generalized form real quaternions, have been presented. In this study, we introduce set biquaternions that includes as special case investigate biquaternions. Furthermore, give Binet formula Cassini's identity terms Finally, matrix representations
منابع مشابه
On Fibonacci numbers which are elliptic Carmichael
Here, we show that if E is a CM elliptic curve with CM field different from Q( √ −1), then the set of n for which the nth Fibonacci number Fn is elliptic Carmichael for E is of asymptotic density zero.
متن کاملOn Fibonacci numbers which are elliptic Korselt numbers
Here, we show that if E is a CM elliptic curve with CM field Q( √ −d), then the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for Q( √ −d) (defined in the paper) is of asymptotic density zero.
متن کاملQuaternions and Biquaternions: Algebra, Geometry and Physical Theories
The review of modern study of algebraic, geometric and differential properties of quaternionic (Q) numbers with their applications. Traditional and ”tensor” formulation of Q-units with their possible representations are discussed and groups of Q-units transformations leaving Q-multiplication rule form-invariant are determined. A series of mathematical and physical applications is offered, among...
متن کاملBiquaternions for analytic and numerical solution of equations of electrodynamics
We give an overview of recent advances in analysis of equations of electrodynamics with the aid of biquaternionic technique. We discuss both models with constant and variable coefficients, integral representations of solutions, a numerical method based on biquaternionic fundamental solutions for solving standard electromagnetic scattering problems, relations between different operators of mathe...
متن کاملFibonacci Numbers
One can prove the following three propositions: (1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m). (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m · n) = gcd(k, n). (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and 0 < 1 n and 1 n ¬ s. In this article we present several logical schemes. The scheme Fib Ind conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamental journal of mathematics and applications
سال: 2021
ISSN: ['2645-8845']
DOI: https://doi.org/10.33401/fujma.811058